Multi-break Rearrangements: From Circular to Linear Genomes
نویسنده
چکیده
Multi-break rearrangements break a genome into multiple fragments and further glue them together in a new order. While 2break rearrangements represent standard reversals, fusions, fissions, and translocations operations; 3-break rearrangements are a natural generalization of transpositions and inverted transpositions. Multi-break rearrangements in circular genomes were studied in depth in [1] and were further applied to the analysis of chromosomal evolution in mammalian genomes [2]. In this paper we extend these results to the more difficult case of linear genomes. In particular, we give lower bounds for the rearrangement distance between linear genomes and use these results to analyze comparative genomic architecture of mammalian genomes.
منابع مشابه
Multi-Break Rearrangements and Breakpoint Re-Uses: From Circular to Linear Genomes
Multi-break rearrangements break a genome into multiple fragments and further glue them together in a new order. While 2-break rearrangements represent standard reversals, fusions, fissions, and translocations, 3-break rearrangements represent a natural generalization of transpositions. Alekseyev and Pevzner (2007a, 2008a) studied multi-break rearrangements in circular genomes and further appli...
متن کاملA New Genomic Evolutionary Model for Rearrangements, Duplications, and Losses That Applies across Eukaryotes and Prokaryotes
Genomic rearrangements have been studied since the beginnings of modern genetics and models for such rearrangements have been the subject of many papers over the last 10 years. However, none of the extant models can predict the evolution of genomic organization into circular unichromosomal genomes (as in most prokaryotes) and linear multichromosomal genomes (as in most eukaryotes). Very few of ...
متن کاملWeighted Genomic Distance Can Hardly Impose a Bound on the Proportion of Transpositions
Genomic distance between two genomes, i.e., the smallest number of genome rearrangements required to transform one genome into the other, is often used as a measure of evolutionary closeness of the genomes in comparative genomics studies. However, in models that include rearrangements of significantly different “power” such as reversals (that are “weak” and most frequent rearrangements) and tra...
متن کاملDistribution of Segment Lengths in Genome Rearrangements
The study of gene orders for constructing phylogenetic trees was introduced by Dobzhansky and Sturtevant in 1938. Different genomes may have homologous genes arranged in different orders. In the early 1990s, Sankoff and colleagues modelled this as ordinary (unsigned) permutations on a set of numbered genes 1, 2, . . . , n, with biological events such as inversions modelled as operations on the ...
متن کاملA linear time algorithm for the inversion median problem in circular bacterial genomes
In the median problem, we are given a distance or dissimilarity measure d, three genomes G1, G2, and G3, and we want to find a genome G (a median) such that the sum ∑ 3 i=1 d(G,Gi) is minimized. The median problem is a special case of the multiple genome rearrangement problem, where one wants to find a phylogenetic tree describing the most “plausible” rearrangement scenario for multiple species...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007